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rmal methods are controversial. 
Their advocates claim they can rev- F olutionize development. Their de- 

tractors think they are impossibly difficult. 
Meanwhile, for most people, formal 
methods are so unhmilix that it is diffi- 
cult tojudge the competing claims. There 
is not much published evidence to s u p  
port one side or the other, and a lot of what 
is said about formal methods is based on 
assertions, not on facts. Thus, some of the 
beliefs about formal methods have been 
exaggerated and have acquired almost 
the status of myths. 

Praxis is a software-engineering com- 
pany where we use formal methods for 
real projects: We write real specifications, 
not just exercises, and we develop real 
software from them. As a result of this ex- 
perience, many of us are enthusiasts for 
formal methods. We have found that they 
offer real benefits; at the same time, we 
have found that many things that people 
believe about formal methods are not true. 

0740-7459/90~9(~//0011/$01 .oO 0 19901EEE 

This article takes a practical look at for- 
mal methods, presents some of the myths 
- favorable and unfavorable - and ex- 
plains what we have found to be the truth 
behind them. As an example throughout 
this article of the use of formal methods, I 
draw particularly from our experience on 
a CASE project, which is described in the 
box on p. 13 

The CASE project was certainly not the 
kind of project that most people associate 
with the use of formal methods, and we 
did not do a completely formal develop 
ment involving proofs and program verifi- 
cation. Nevertheless, we found that we 
gained enormous benefit from using the 
Z specification notation,' which is one of 
several formal-methods notations. 

The seven most prevalent formal-meth- 
ods myths are variants of the following: 

1 .  Formal methods can guarantee that soj-  
ware isperfect. The most important myth is 
that formal methods are somehow all- 
powerful - if only we mortals could apply 
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them. This isa pernicious myth, because it 
leads to both unrealistic expectations and 
the idea that formal methods are some- 
how alhr-nothing. The reality is that no 
such guarantee can be given - but the 
usefulnessof formal methods does not de- 
pend on such absolute perfection. 

2. Thy work by proving that programs are 
correct. In the US, a lot of the work in for- 
mal methods has concentrated on p r e  
gram verification. This has made formal 
methods seem very hard and not very 
relevant to real life. However, you can 
achieve alotwithout anyformal proofsatall. 

3. Only highly m’tiral systems h e f i t  from 
lhezr uw. This belief is bared on the per- 
ceived difficulty of using formal methods. 
The truth is that critical systems do de- 
mand the most thorough use of formal 
methods, but any system benefits gener- 
ally from using at least some formal tech- 
niques. 

4. They involve complex mathematics. For- 
mal methods are based on mathematics, 
and many people believe that this makes 
them too difficult for practicing software 
engineers. This myth is in turn based on a 
view that mathematics is intrinsically diffi- 
cult. At Praxis, we have found that the 
mathematics of specification, at least, is 
easily learned and used. 

5. Thy increase the cost of development. It 
used to be said that, although the use of 
formal methods was very expensive, it was 
worthwhile because of the lower mainte- 
nance costs for the resulting software. But 
this is a difficult argument to sell to hard- 
pressed project managers, whose budget 
is for development, not maintenance. In 
fact, we have some evidence that develop 
mmt can be cheaper when you use formal 
specification. 

6. Thq are incomprehensible to clients. A 
formal specification is full of mathemati- 
cal symbols, which render it incompre- 
hensible to anyone unfamiliar with the 
terminology. Therefore, it is supposed, a 
formal specification is useless for non- 
mathematical clients. However, mathe- 
matics is not the only part of a formal spec- 
ification - it supports many other ways of 
expressing the specification that give the 
client a better understanding early on in 
the project. 

7. Nobody uses [hem fbr real projects. For- 
mal methods are often associated with ac- 

ademic departments and research organi- 
zations. It is thought that only such organi- 
zations have the expertise necessary to use 
them and that they are only suitable for 
the idealized applications that such 
groups would carry out. But our experi- 
ence in the CASE project, and the experi- 
ence of other industrial users, is turning 
this point ofview into a myth -or at least 
into history. 

Myth 1 
Formal methods can guucirantee that softruare 

The fact is that formal methods are falli- 
i.5 perfect. 

ble. 

It OUgM to be too 
obvious to need saying, 
but nothing can achieve 

perfMion. 
Unfortunately, 

sometimes proponents 
of formal methods claim 
they offer an absolute 

marantee that cannot be 
achieved any other way. 

It ought to be too obvious to need say- 
ing, but nothing can achieve perfection. 
Unfortunately, it sometimes seems that 
proponents of formal methods claim they 
offer an absolute guarantee that cannot 
be achieved any other way. Ifyou take this 
position then any problem with formally 
developed software is a refutation of for- 
mal methods’ usefulness. Formal meth- 
ods have been strongly criticized precisely 
on this absolutist basis. 

It is important to understand formal 
methods’ intrinsic limitations. Their falli- 
bility is the most fundamental limitation, 
and it arises from two facts: Some things 
can never be proved and we can make mis 
takes in the proofs of those things we can 
prove. 

Limits on proofs. A proof is a demon- 
stration that one formal statement follows 
from another. The real world is not a for- 
mal system. A proof, therefore, does not 

show that, in the real world, things will 
happen as you expect. So you can never be 
sure that your specifications are “correct,” 
however much you prove about them. 

This should not deter you. All engineer- 
ing is concerned with making models of 
the real world and using those models to 
design artifacts. Models based on mathe- 
matics are ideal because you can establish 
the models’ properties by reasoning and 
because you can manipulate the models 
during design. The designer of a crane, 
for example, abstracts the real crane into 
a structure of idealized components with 
known properties like mass and load-bear- 
ing capacity. He uses this model to design 
and predict the properties of the real 
crane. There is no way he can prove that 
the real crane will behave as he predicted. 

Rut, on the whole, the correspondence 
between the mathematical models used in 
structural engineering and the real world 
is wellenough understood that we trust 
such mathematical models. The more ma- 
ture the engineering discipline, the more 
likely we are to trust the models it uses. 
There have certainly been enough engi- 
neering disasters to convince anyone that 
the correspondence is not perfect, but n e  
body would suggest that crane builders 
should abandon mathematics. 

In software, the limits of our modeling 
techniques are also reasonably well un- 
derstood. First, models cover only some 
aspects of a program’s behavior. Second, 
the correspondence between the formal 
description and the real world is limited. 

There are good mathematical models 
for the behavior of sequential programs. 
Models for concurrent behavior are also 
available but less easy to use. Some people 
say we cannot model timing constraints 
formally; this is not strictly true, but it is 
true that we do not know how to use such 
models to help us develop software that 
meets the constraints. Finally, we cannot 
yet model nonfunctional properties like 
performance, reliability, maintainability, 
and availability. 

The correspondence between our for- 
mal models of programs and the actual 
behavior of real systems is limited by three 
factors: the behavior of the programming 
language, the operating system, and the 
underlying hardware. For safety-critical 
systems, these limitations are crucially im- 
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portant and we cannot assume that a pro- 
gram is correct just because it has been 
proved. 

Mistakes may be made. Even within our 
formalism, we can make mistakes in doing 
proofs, just as we can make mistakes in 
writing programs. Indeed, published for- 
mal specifications have errors in them. 

In spite of these apparent problems, for- 
mal methods do work. There are two rea- 
sons. One is that there are some ways in 
which formal methods offer qualitatively 
different and better guarantees than any 
other method. The other is that even 
though formal methods still let you make 
mistakes, they are much better at expos 
ing these mistakes. 

Demonstrating correctness. There is an 
often quoted remark that “Program test- 
ing can be used to show the presence of 
bugs, but never to show their absence!’” 
This seems to imply that something else 
- proving - can show the absence of 
bugs. There are two senses in which this is 
true (although in both cases the possibil- 
ity of errors in the reasoning process 
means that the demonstration is not abso- 
lutely infallible) : 

Some properties can be established 
only by formal reasoning. Many require- 
ments are couched as universal state- 
ments, like ‘The program will always log 
user actions” and ‘The system will never 
lose a message.” Such statements can in 
principle not be established by testing or 
simulation, but they can be established by 
reasoning about the specification. 

Some steps cun be demonstrably cor- 
rect. For example, the relation between a 
program and its specification is a formal 
one and can be proved to be correct. So 
you can nearly guarantee that a program 
meets a specification, even though this 
does not mean that the program is per- 
fect. (The guarantee is only “near” be- 
cause of the limits of the mathematical 
model in capturing the real world; even if 
the guarantee were absolute, it would not 
mean the program was perfect because 
the specification might be wrong.) 

Finding errors. Although they eliminate 
only certain classes of errors - and then 
not with absolute certainty - formal 

The CASE prqiect 
The CASE project we applied formal specifications to is a software-engineering tool set to 

support project teams using SSADM, a structured systems-analysis and -design method. 
Each team member has a workstation, and the workstations are networked to a central 
project machine. The infrastructure of the CASE project provides - a muitiuser distributed project-management and configuration-management system 
controlling all development information and tasks and 

a set of basic classes (like diagram, table, and matrix) from which tools for structured 
analysis can be developed by specialization. 

The infrastructure is implemented on top of Sun Unix. It is coded in Objective C. 
The specification is a document of about 340 pages written in Z with English comments. It 

Development from this specification proceeded by 
-writing a concrete specification of the interfaces in Objective C, 
*writing, for some parts of the system, informal design documents, 
-coding other parts directly from the Z specification, 
writing some Z specifications of lower level modules, and - coding from the informal designs or lower level specifications. 

We did no proof or mathematical program construction. 
We used our normal company standards for project planning, integration and testing, 

We coded about 58,000 lines of Objective C, of which about 37,000 lines were deliverable 

The project lasted nearly 90 weeks and used about 450 man-weeks of effort, of which 

contains about 550 schemas defining about 280 operations. 

configuration management, arid so on. 

software. 

about two were devoted to the system specification. 

methods do make it much easier to find 
all sorts of errors. In an informal specifica- 
tion, it is hard to tell what is an error, be- 
cause it is not clear what is being said. 
When challenged, people try to defend 
their informal specification by reinter- 
preting it to meet the criticism. With a for- 
mal specification, we have found that er- 
rors are much more easily found - and, 
once they are found, everyone is more 
ready to agree that they are errors. 

In this sense, formal methods are a sci- 
entific approach to development, since 
they offer specifications that can be re- 
futed. (In informal software develop 
ment, the specification is usually only re- 
futed by testing. By this stage, it has of 
course been made formal - by transla- 
tion into a programming language - but 
it is no longer easily comprehended by 
people.) 

In the CASE and other projects using 
formal methods at Praxis, we have found 
that the ability to expose errors is one of 
these methods’ key benefits. Even though 
we have undertaken very few proofs or 
completely formal development steps, we 
have found that inspections of formal 
specifications reveal more errors than 
those of informal specifications, and it is 
more effective to inspect designs or p r e  
grams against formal specifications than 
against other kinds of design documenta- 
tion. IBM has reported similar experi- 
e n c e ~ . ~  

Formal methods are all aboutfmgrampnnring. 
The fact is that formal methods are all 

about specifications. 
I use the term “formal methods” to 

cover the use of mathematics in software 
development. The main activities I in- 
clude are 

writing a formal specification, 
proving properties about the specifica- 

tion, 
constructing a program by mathemat- 

ically manipulating the specification, and 
verifying a program by mathematical 

argument. 
Thus, program verification is only one 

aspect of formal methods. In many ways, it 
is the most dificult. For non-safetycritical 
projects, program verification is far from 
the most important aspect of a formal de- 
velopment. Since the cost of removing er- 
rors increases dramatically as a project 
progresses, it is more important to pay 
thorough attention to the early phases. 

System specification. From an econ- 
omic point ofview, therefore, the mostim- 
portant part of a formal development is 
the system spenfication. For many projects, 
this is the only part of the development 
that is formal. In any case, a formal specifi- 
cation of what a program is to do is a pre- 
requisite for verifying that the program is 
correct. 
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;\formal specification is a precise defini- 
tion ofwhat the software is intended to do. 
You can give any piece of software, from a 
single module to a whole system, a formal 
specification. On the CASE project, we 
used Z to write the formal specification of 
the whole system. Such system specifica- 
tions are the most practical and valuable 
ways of using formal methods. 

A formal system specification is compa- 
rable in scope to a conventional require- 
ments analysis using dataflow or entity-re- 

lationship diagrams. It differs from con- 
ventional design specifications in that it is 
concerned only with the function of the 
system and makes no commitments to its 
structure. 

To illustrate the notion of a formal spec- 
ification, the box below shows an example 
that is a simplification of part of the CASE 
specification. It is written in Z. A Z specifi- 
cation is a mathematical model of the sys 
tem to be built. It consists of two parts: a 
definition of the state of the system and a 

collection of definitions of operations on 
the system. 

A specification is abstract in three 
senses: 

It uses data types, like sets and rela- 
tions, that can model applications di- 
rectly, rather than computer-oriented 
types like arrays. In the example, I use sets 
to represent the collections of tasks and 
documents in the system and a function to 
represent the relationship between them. 
These representations capture the es- 

The CASE project system contains acollection of documents and a 
collection of tasks. Each document is produced by a task; tasks may 
produce more than one document; all tasks produce at least one 
document. 

To describe this in Z, we built a mathematical model. We did not say 
what “tasks” and “documents” are, so we just let these be represented 
by the names TASK and Doc at this stage. In Z notation, the text in the 
first part of a schema is the declaration, which describes the model’s 
components; the text in the second part of the schema is the predicate, 
which describes the model’s popedies. Schemas are split by horizon- 
tal rules. 

Defining tasks and documents. This part of the model is called 

- TasksAndDocuments 
documents : P DOC 
tasks : P TASK 
OutpufTask: DOC--TASK 

TasksAndDocuments. The specification is 

dorn outputTask = documents 
ran oufputTask= tasks 

In Z, the symbol fora set of things is P, which you can pronounce “set 
of.”Thefirsttwolinesof our model definethecomponentsdocuments, 
whichisasetofDocs,andtasks, whichisasetof~ns~s.Thisexpresses 
the fact that ‘The system contains a collection of documents and a 
collection of tasks.” 

Next, you must say that “each document is produced by a task.” We 
did this in two parts. First, we set up an association between docu- 
ments and the tasks that produce them, which we called outputTask. 
This association is written as a function, for which the 2 symbol is +, 
that tells us that a document can only be the output of one task. 

Then you must say that each document is produced this way, so you 
say that the action associates all the documents you know about with 
tasks: That is done in the statement ”dorn outputTask = documents,’’ 
because the expression “dorn outputTask means “all the documents 
that are associated with tasks by the function outputTask.” 

Similarly, the Z expression “ran outputTask means “all the tasks that 
are associated with documents by the function outputTask.” To ex- 
pressthe requirementthat all tasks produce at least one document, we 
said “ran outputTask = tasks.” 

The final part of our English specification is that ‘Tasks may produce 
more than one document”; there is no need to say anything special 
about this in the mathematics, since the specification as it stands 
allows it. In formal specifications, anything not forbidden is allowed; if 
we had wanted to say that “tasks may not produce more than one 
document,” we could easily have done so. 

Removing documents. We then specified the operation to remove 
a document. A document can be removed only if it is known to the 
system. When it is removed, the document is no longer recorded as a 
tasks output. If this causes a task to have no remaining outputs, the 
task is also removed. The specification is 

RemoveDocument 
A TasksAndDocuments r oldDoc? : DOC 

I oldDoc? E documents I outputTasK = { oldDoc?] 4 outputTask 

To say this in Z, you first say that you are defining an operation that 
changes the part of the state called TasksAndDocuments; that is the 
meaning of the line “ATasksAndDocuments.” 

Next, you declare that the operation has an input parameter, old- 
Doc?, of type DOC, which is the document to be removed, 

Now you have to say what the operation actually does. First, for it to 
do anything, the document you are trying to get rid of must be one of 
the known documents. In 2, you say it must be a member of the set of 
known documents: “oldDoc? E documents.” 

Finally, you define the effect. You can do this very simply: All you do 
is remove the document from the function outputTask. The way to do 
this in 2 is to give an equation that tells you what the new value of 
outputTask, called outputTask‘, will be. The symbol for removing ele- 
ments from the domain of afunction i s d ,  so the equation you want is 
“outputTask’ = {oldDoc?} ‘BoutputTask.” 

You can rely on the other properties of the state to ensure that, when 
you do this, the document will also disappear from the documents set, 
since you defined the documents set to be identical to the domain of 
outputTask. Furthermore, if this leaves a taskwith no outputs, that task 
too will disappear, since all tasks are defined to produce at least one 
document. If you want, you can prove that these changes will happen. 
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sence of what is required better than the 
corresponding implementation struc- 
tures. 

It specifies what is to be done rather 
than hmit is to be done. The definition of 
the operation RemoveDocument, for ex- 
ample, simply says that, after the opera- 
tion, the relevant document has been re- 
moved. It needs to say nothing about how 
the removal is done, nor how any related 
task is found and removed. 

It specifies only whatever level of detail 
is necessary; you can simply leave unsaid 
things that are not important. In the ex- 
ample, we did not say what TASK and DOC 
actually were. This too is an implementa- 
tion detail ofno interest to the specifier or 
client. 

This abstraction represents a proper 
separation of concerns betwren what the 
users want to define and what they are 
content to leave to the implementers. 
Such separation of concerns is important 
in controlling the development process, 
whatever lifecycle model you use. For ex- 
ample, in a development that uses p r e  
totyping to explore user requirements, it 
is important to separate the essential be- 
havior of the prototypes from incidental 
details of the prototype implementation. 

You remove the incompleteness of the 
specification in two ways. First, you record 
in other documents like statements of 
nonfunctional requirements those things 
that you would like to say at the specifica- 
tion stage but cannot because of your 
mathematical models' limitations. Sec- 
ond, you supply during the subsequent 
design and implementation steps the in- 
formation that has been deliberately 
omitted. 

Occasionally, these subsequent steps re- 
veal problems with the specification that 
had been hidden by the abstraction. For 
example, it is possible to write specifica- 
tions that cannot be implemented effi- 
ciently. In that case, you must revise the 
specification itself at the design stage. 

A specification is central to a project in 
three ways: 

The actual process ofconstructing the 
specification is as important as its exis 
tence. 

Proofs of the specification's properties 
are at least as useful as proofs of correct 
implementation. 

You can construct implementations 
from the specification so they arc correct. 

Benefits. We found that writing the 
CASE specification helped us to clarify the 
requirements, discover latent errors and 
ambiguities, and make decisions about 
functionality at the right stages. 

For example, we started off with elab 
orate requirements for documents to 
have different status values with complex 
transitions between them. A formaliza- 
tion of this let us simplify the model into a 
few distinct concepts. For example, we 
modeled the extent of machinechecking 
a document separately from how far it had 
been through a formal approval process. 
This made it easy to understand and verify 

Formal specifications let 
you say whatever you 

think is important at the 
specficath stage. But, 
if you really are prepared 
to leave decisions until 
a later w e ,  you can 

do that, too. 

with the user that our rules governing 
these statusvalues were correct. Such clar- 
ification of requirements can lead to 
smaller and simpler systems - and to less 
rework in system test." 

It is hard to fudge a decision when writ- 
ing formal specifications, so if there are 
errors or ambiguities in your thinking, 
they will be mercilessly revealed: You will 
find youcannotwrite acoherentspeciiica- 
tion or that, when you present the specifi- 
cation to the users, they will quickly tell 
you that you have got it wrong. Better now 
than when all the programming money 
has been spent! 

Several times during the development 
of the CASE project, we discovered unex- 
pected consequences of the specification. 
For example, early on we wrote a specifica- 
tion that allowed documents, but not 
tasks, to have versions. We rapidly discov- 
ered that we could not express this model 
formally. To get over this, we introduced 
the concept of a taskversion, which repre- 
sented the running of a task with a partic- 

ular collection of documentversions. This 
concept turned out to represent a real- 
world object that was central to the way 
that the CASE tool set would be used, but 
we had not been able to see this usage 
clearly in an informal description of the 
system. 

Formal specifications let you say what- 
ever you think is important at the specifi- 
cation stage. At the same time, ifyou really 
arc prepared to leave decisions until a 
later stage, you can do that, too. 

Our example has a typical instance of 
such a decision. We defined, in the specifi- 
cation, precisely what happens when the 
last output of a task is removed: The task is 
removed as well. It is likely that an infor- 
mal specification would not have made 
this clear, and the coder would have had 
to make a decision. But this clearly is a 
specification matter, since the effect is visi- 
ble to the user. Omitting it from the for- 
mal specification, whether accidentally or 
deliberately, would be very obvious - 
there would be a component of the state 
whose value was undefined. 

Specifications and proofs. Once you 
have a formal specification, you can prove 
things about the specification itself, aswell 
as proving that a program satisfies it. 
These other properties may have to do 
with consistency of the specification or 
completeness of operation definitions. 
They may also be proofs that the specifica- 
tion (and thus the developed software) 
will meet certain key requirements. For 
safety and security, these may be certain 
kinds of integrity or other important re- 
quirements. In any case, because errors at 
this stage are more costly than implemen- 
tation errors, proofs of these properties 
are correspondingly more important 
than proofs of implementations. Jim 
Woodcock5 has shown reasoning applied 
to a practical specification (the CICS stor- 
age manager). 

Implementing from formal specific* 
tions. When you do come to implement 
specifications formally, you do not do it by 
writing a program and then trying to 
prove that it meets the specification. This 
is infeasible for any but the smallest p r o  
grams. Instead, you construct a correct 
program in small steps. Each step takes 
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the specification and produces something 
a little nearer to the final program. Each 
step is small enough that you can see ex- 
actlywhat needs to be proved to show that 
the step is correct - and, if you doubt the 
correctness, you can actually carry out the 
proof. This style of development is de- 
scribed in a textbookon theViennaDeve1- 
opment Method6 and a book on con- 
structing correct algorithms.’ It has been 
used, for example, to implement hard- 
ware from aformal specification in Z8 

Each design step in such a development 
adds some detail that was omitted from 
the formal specification or makes some 
decision that was postponed. The im- 
plementers must 

provide efficient implementation 
structures to represent the application 
concepts, 

know or develop algorithms to carry 
out the required operations, and 

fill in details where these have deliber- 
ately been left to theirjudgment. 

In the CASE project, we used formality 
only in writing the specification. We did 
not try any program proving at all. The 
kinds of design steps we made on the 
CASE project were to: 

Decide on a concrete language inter- 
face for the operations. 

Decide on a concrete data structure to 
represent some abstract structure in the 
specification; for example, an object class 
to represent the function outputTask. 
The designer was free to choose any suit- 
able representation that had the required 
properties. 

Decide on some lower level operations 
needed to implement the toplevel opera- 
tions. For example, we identified a com- 
ponent called the kernel that provided 
low-level storage and distribution func- 
tions. We specified this component for- 
mally and implemented it from its Z speci- 
fication. 

Of course, these design steps required 
creativity: The specification did not over- 
constrain the designers, but it also did not 
do theirjob for them. We found that mak- 
ing such design decisions was in practice 
relatively straightforward and that, most 
important, it was easy to see if any pro- 
posed design met the specification. 

A specification is a kind of contract be- 
tween specifiers and implementers, and if 

the specification is formal, it is easy to in- 
terpret the contract and to decide if it has 
been satisfied. 

Myth 3 
Formal methods are on4 usefulforsafty-rit- 

ical systems. 
The fact is that formal specifications 

help with any system. 
Probably the largest practical applica- 

tions of formal methods have been in 
noncritical projects. Our CASE project, 
for example, was not at all safety- or secu- 
rity-critical. Formal methods should be 
used wherever the cost of failure is high. 
Systems whose cost of failure is high in- 
clude those that are 

critical in some way, 
replicated many times, 
fixed into hardware, or 
dependent on quality for commercial 

reasons. 
Almost any serious piece of software 

qualifies for at least one of these reasons. 
Our CASE project, for example, had to be 
a highquality product to satisfy the client 
and its users. 

Applying formal methods can benefit 
many areas, including fitness for purpose, 
maintainability, ease of construction, and 
better visibility. 

Formality offers ways to ensure the right 
software is built. You can discuss the speci- 
fication with the user and, in some cases, 
build prototypes on the basis of the speci- 
fication to demonstrate just what is pro- 
posed. You can use formal reasoning to 
demonstrate some of the specification’s 
consequences, giving you something on 
which to have a discussion with the user. 

One of the main problems in maintain- 
ing software is knowing what it is supposed 
to do. Another is knowing what each part 
is supposed to do, and thus what must be 
preserved as the software is changed. For- 
mal specifications are ideal for this pur- 
pose. 

Our experience shows that it is easier to 
build a system from a formal specification 
than by using other methods. Even when 
we have not done development rigor- 
ously, we have found coding from a formal 
specification to be straightforward. 

The application of formal methods can 
also make you more confident in the de- 
velopment process because at each stage it  

is clearer what has and has not been done. 
Monitoring is more reliable and thus de- 
velopment is less risky. 

Starting from aformal specification, the 
development process can be very rigor- 
ous, if it is done in small steps with each 
step formally expressed and justified. It 
can also be less rigorous, if the steps are 
larger and justified only informally. You 
choose the degree of rigor to suit the a p  
plication. If the system is critical, it must of 
course be developed completely formally. 

However, many benefits of formal meth- 
ods come from the specification stage. 
Thus, on a noncritical system, even if 
none of the rest of the development is for- 
mal, just writing a formal specification is a 
big improvement over other informal 
methods. 

Myth 4 
Formal methods require highly trained math- 

ematicians. 
The fact is that the mathematics for 

specification is easy. 
Once it  is recognized that the practice 

of formal methods is most concerned with 
writing specifications, the mathematical 
difficulties become much less significant. 
You can develop specifications themselves 
with very straightforward mathematics 
that any practicing engineer should know. 

For example, in Z, the only branches of 
mathematics you need to write specifica- 
tions are set theory and logic. The ele- 
ments of both these are easily understood 
and nowadays are taught to teenagers. 

Of course, before engineers can use for- 
mal methods, they must be trained - in 
this respect, formal methods are no differ- 
ent from other methods. Our experience 
is that such training is not difficult and 
that people with only high-school math 
training can write excellent formal specifi- 
cations. Certainly anyone who can learn a 
programming language can learn a speci- 
fication notation like Z. 

The specification of a problem is shorter 
and much easier to understand than its 
expression in a programming language. 
Consider the operation RemoveDocu- 
ment in the example in the box on p. 14:A 
definition of this operation in, say, pseu- 
docode would be far longer and less com- 
prehensible. 

People have a fear of new symbols. But 
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mathematical symbols are introduced to 
make mathematics easier, not more diffi- 
cult. People quickly become Familiar with 
the new symbols. The difficulty in learn- 
ing logic is not the symbols, any more than 
the difficulty in learning Russian is learn- 
ing the Cyrillic alphabet. 

Difficulties. This does not mean that ev- 
erything about writing specifications is 
easy. When the notation has been learned, 
there are still difficulties. Some people are 
better at it than others,just as some people 
are better at programming than others. 

The main difficulty is making the right 
connections between the real world and 
the mathematical formalism. It can be 
hard to choose the right things in the real 
world to model -to get the right level of 
abstraction. Some programmers put too 
much detail into their specifications and 
make them too complicated. You can also 
make the opposite error: writing specifica- 
tions that are too abstract. 

However, these are problems of any 
kind of specification, not problems intro- 
duced by formality. Many programmers 
find it difficult to write specifications in 
any notation, because it is difficult for 
them to get away from programming-lan- 
guage detail. When using formal specifi- 
cations, studying good published case 
studies and getting advice from an experi- 
enced person can help you avoid these 
problems. 

Training hints. We have found that 
there are three stages of training needed: 

Training in discrete mathematics, 
which needs to cover elementary set theory 
and formal logic. For those who have a 
mathematical background but are unfa- 
miliar with these topics, a single day suf- 
fices to introduce the ideas. Even for the 
innumerate, less than a week's training is 
needed. There are many good textbooks 
on discrete mathematics. 

Training in the particular formal nota- 
tion. A Z or VDM course typically takes 
one or two weeks, assuming that the par- 
ticipan ts have the necessary mathematical 
background. Textbooks are available for 
VDM6 and Z.' 

Tutoring and consultation in real pro- 
jects. After training, students can use for- 
mal methods, but they will still encounter 

difficulties. To get over these, we recom- 
mend workshops where you can tackle 
problems with the help of a tutor. It is also 
essential that every project using formal 
methods have access to at least one person 
with experience using the method. If nec- 
essary, you can ensure this by hiring some 
consultants during the early stages of the 
project: 10 mandays of effort, used wisely, 
may suffice. 

A much higher level of mathematical 
skill is needed if you intend to go beyond 
formal specification and carry out a fully 
formal development that includes proofs. 
It is unrealistic to expect the majority of 
software engineers to be able to do proofs 
easily. Nor is it likely that machine assis- 
tance will be any help. Proof tools are still 

A much higher level of 
mathematical skill is 
needed if you intend to 

go beyond *mal 
specil5cation andcany 

out a hlly formal 
development that 
includes proofs. 

in a very primitive state - and, in any 
event, there are fundamental difficulties 
with machine assistance for proof. 

Therefore, competent people who can 
cope with the necessary mathematical ma- 
nipulations are the ones who must carry 
out safety-critical projects. Of course, the 
same is true of bridge building. 

Myth 5 
F m l  methods increase the cost of h e b p  

ment. 
The fact is that writing a formal speci- 

fication decreases the cost of develop- 
ment. 

A completely formal development that 
includes proving each development step 
is very expensive - probably infeasibly so 
for all but the most critical applications. 
But because many benefits come just from 
writing formal specifications, it is impor- 
tant to know if this too is costly. 

Lower development costs. It is notori- 
ously difficult to compare the costs of 

developing software under different 
methods. There are no figures for the de- 
velopment cost5 for the same piece of soft- 
ware using both a wellestablished formal 
method and a comparable informal 
method. However, experience on the cost 
of projects that use formal specification is 
beginning to accumulate. None of this ev- 
idence supports the idea that develop 
ment costs are higher if you use formal 
specifications; if anything, it suggests that 
they are lorum. 

Our own experience on the CASE proj- 
ect showed a productivity (measured in 
lines of code per day) measured from start 
of specification to acceptance that was 
much higher than our normal estimating 
figure. Because we implemented the 
CASE project in a productive language 
(Objective C), the productivity ratio in 
terms of useful function implemented per 
day would probably be even higher. 

Rolls-Royce and  Associates has re- 
ported4 that on a safety-critical project 
where it used formal specification and 
planned testing, it achieved better p r e  
ductivity figures than when it did neither. 
(At first, the productivity was lower, but 
this was attributed to learning to use vari- 
ous non-user-friendly tools and was not 
connected with the formal method itself.) 
The cost of learning to use the formal 
method was not a significant problem, al- 
though IBM has highlighted this learning 
as an important one-time Rolls- 
Royce reported that the 7 percent of the 
time spent on specification avoided large 
costs at the back end of the project. 

Life-cycle changes. Although using for- 
mal specification on a project does not 
cost more, it does change the shape of the 
project. More time is spent on the specifi- 
cation phase - in the CASE project, 
about 30 percent of the effort was spent 
before implementation started. Why? Be- 
cause more of the work is being done at 
this stage than typical. But the implemen- 
tation, integration, and testing phases are 
shorter. 

The longer specification phase does 
cause a problem: It can be difficult to 
manage the specification process, be- 
cause it is harder to see what progress is 
being made. Especially at the beginning, 
it can be hard to believe that any progress 
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Figure 1. The life history of a specification. 

is being made at all, since all sorts of ideas 
are being tried and thrown away - which 
is as it should be. Our experience of how 
the size ofa specification grows is shown in 
Figure 1 .  (For the actual size of a real spec- 
ification and the corresponding code, see 
the box on p. 14.) 

At first, very little seems to happen. But 
after a time, people begin to understand 
the problem, and rapid progress is made. 
Then the growth slows down and, if things 
are going well, the specification starts to 
get smaller. This is the where the problem 
is really understood and where regulari- 
ties and similarities are recognized, which 
leads to the specification's structure being 
tightened and improved. This polishing 
process can continue indefinitely, and a 
good project manager must knowwhen to 
stop. He certainly should not stop while 
the specification is still growing - at that 
point, the problem is still not fully cracked. 

It is important to record the plausible 
specifications that were tried and re- 
jected, as well as the reasons for their re- 
jection, not just the final Specification. 
These records will help guide future pro- 
jects, prevent the repetition of unfruitful 
work, and guide the maintainers. 

It is also imperative to recognize that 
specifications are never perfect. When it 
comes to the implementation stage, you 
will find deficiencies in the specification. 

When this happens, you must modify the 
specification - under change control, of 
course. There is a strong temptation to 
correct the implementation but not the 
specification - this leads to rapidly in- 
creasing divergence between the specifi- 
cation and the actual software and means 
that the specification becomes useless for 
maintenance. The two must be kept in 
step. If you do this, the specification con- 
tinues to be a valuable document  
throughout the software's life. Clearly, 
there is a cost in doing this, but it is not 
large: On the CASE project, it was less 
than 5 percent of the implementation 
phase's effort. 

F m l  methods are unacceptable to usm. 
The fact is that formal specifications 

help users understand what they are get- 
ting. 

How? The specification captures what 
the user wants kfme it is built. But to real- 
ize this benefit, you must make the specifi- 
cation comprehensible to the user. There 
are three ways to do this: 

Paraphrase the specification in natural 
language. 

Demonstrate consequences of the 
specification. 

Animate the specification. 
The first way is always essential. A mathe- 

matical specification must be accompa- 
nied by a natural-language description 
that explains what the specification 
means in real-world terms and why the 
specification says what it does. 

You must allocate time and resources 
for the effort to write this accompanying 
text. This effort is worthwhile, since our 
experience has shown that documents 
produced from a formal specification can 
be more comprehensible, more accurate, 
shorter, and more useful than informal 
specifications. 

A well-produced formal specification 
can have the mathematics taken out of it 
entirely - the result is a natural-language 
document that is a much better specifica- 
tion of the system than a conventional in- 
formal Specification. You can also use for- 
mal specifications with diagrammatic 
notation - there is nothing to prevent 
the use of any notation that helps explain 
the system. 

One way that formal specifications are 
more useful than any other method is that 
they may let you demonstrate by formal 
reasoning to the user that the specifica- 
tions meet certain requirements. You can 
do this only if the requirements can 
themselves be expressed formally, but 
many properties like safety and security 
can be partially expressed formally. Even 
if there are no formally expressed require- 
ments, you can draw out certain conse- 
quences of the specification and present 
them to the user. In the CASE project, for 
example, we deduced (although we did 
not formally prove) properties like "No 
version stored on the project machine is 
ever changed." 

Formal specifications are sometimes 
thought of as antithetical to techniques 
like animation and prototyping. In fact, 
the approaches are complementary, and 
both have the goal of establishing user re- 
quirements more reliably. One way to use 
them together is to build prototypes to ex- 
plore requirements issues and then to re- 
cord the results in a formal specification 
as the basis of subsequent development. 
Sometimes, you can use prototypes to de- 
fine areas that are not well expressed in 
formal specifications. On the CASE proj- 
ect, we used prototyping to explore details 
of the user interface and formal specifica- 
tions for the system's actual functions. 
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You can animate some formal nota- 
tions, giving you an immediate pro- 
totyping capability. However, the more 
powerful specification languages cannot 
be executed this way, and so a separate 
step, like implementation in Prolog, is re- 
quired to animate the specification. 

Myth 7 
Formal methods are not wed on real, large- 

scale soflware. 
The fact is that formal methods are used 

daily on industrial projects. 
Several organizations, not just Praxis, 

are using formal methods on industrial- 
scale projects. Many people know of appli- 
cations in the security area, but the scope 
of formal methods is far wider. Examples 
of the kinds of project that are using for- 
mal methods include the following: 

Transaction processing. IBM’s CICS is 
a large, 2@year-old transaction-processing 
system. It contains more than a half mil- 
lion lines of code. IBM is using Z to 
respecify key CICS interfaces to improve 
its maintainability. So far, Z specifications 
have been written for more than 100,000 
lines of new or changed code.’ 

Hardware. The use of formal methods 
is not confined to software. There are at 
least three examples of the notation Z 
being used to specify hardware. One is the 
Secure Multiprocessing of Information by 
Type Environment secure computer ar- 
chitecture. SMITE’S order code has been 
specified in Z by the British company 
Plessey. The floating-point unit for the 
transputer was specified in Z, incidentally 
revealing errors in many other floating- 
point implementations.* Tektronix has 
been using Z to specify the functionality of 
oscilloscope families, as the article on p. 
29 describes. 

Compilers. The Danish Datamatik 
Center has for many years been develop 
ing industrial compilers using formal 
methods. 

Software tools. Our CASE project sys- 
tem is only one, although the most com- 
plete, example of the use of formal specifi- 
cation in software tools. Other examples 
are the interface to the Portable Common 
Tools Environment: a European stan- 
dard for software engineering, and the 
specifications of database-based software- 
engineering environments.” 

Reactor control. KollsKoyce and Ass* 
ciates used a combination of English and 
formal specification to specify nuclear-re- 
actor control software! It used animation 
to explore the specification with the re- 
sponsible engineer. 

Clearly, these projects represent a tiny 
fraction of all software development. 
However, they are real industrialscale a p  
plications, and they report positive bene- 
fits from the use of formal methods. 

Our own experience on the CASE proj- 
ect has been that formal methods can be 
very effective. But they are only one part 
of a project: The CASE project used for- 
mal specification in the framework of nor- 
mal quality-assurance and project-man- 
agement controls and with other good 
design, implementation, and testing tech- 
niques. 

Formal methods offer no magic guar- 
antees: Our CASE project was an ordinary 
project with its share of problems. But the 
project team believes that the formality of 
the specification was a major benefit 
throughout the project. 

s a result of our experiences, we 
believe that formal methods must A be better understood by develop 

ers at large. They are powerful tools, 
although by no means a panacea. The rea- 
sons for their effectiveness are not nec- 
essarily the reasons for which they were 
originally developed. Nor are the difficul- 
ties in their use the obvious ones of nota- 
tion and mathematical sophistication. 

Instead of perpetuating the seven 
myths, I offer seven facts to replace them: 

1. Formal methods are very helpful at 
finding errors early on and can nearly 
eliminate certain classes of error. 

2. They work largely by making you 
think very hard about the system you p r e  
pose to build. 

3. They are useful for almost any appli- 
cation. 

4. They are based on mathematical 
specifications, which are much easier to 
understand than programs. 

5. They can decrease the cost of devel- 
opment. 

6. They can help clients understand 
what they are buying. 

7. They are being used successfully on 
practical projects in industry. 0:. 
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