
Seven Myths
of Formal Methods

Anthony Hall, Praxis Systems

Formal methods are
difficult, expensive,

and not widely useful,
detracturs say. U s i e a

case stu$yandother
real-world examples,

this article challenges
such common myths.

September 1990

rmal methods are controversial.
Their advocates claim they can rev- F olutionize development. Their de-

tractors think they are impossibly difficult.
Meanwhile, for most people, formal
methods are so unhmilix that it is diffi-
cult tojudge the competing claims. There
is not much published evidence to s u p
port one side or the other, and a lot of what
is said about formal methods is based on
assertions, not on facts. Thus, some of the
beliefs about formal methods have been
exaggerated and have acquired almost
the status of myths.

Praxis is a software-engineering com-
pany where we use formal methods for
real projects: We write real specifications,
not just exercises, and we develop real
software from them. As a result of this ex-
perience, many of us are enthusiasts for
formal methods. We have found that they
offer real benefits; at the same time, we
have found that many things that people
believe about formal methods are not true.

0740-7459/90~9(~//0011/$01 .oO 0 19901EEE

This article takes a practical look at for-
mal methods, presents some of the myths
- favorable and unfavorable - and ex-
plains what we have found to be the truth
behind them. As an example throughout
this article of the use of formal methods, I
draw particularly from our experience on
a CASE project, which is described in the
box on p. 13

The CASE project was certainly not the
kind of project that most people associate
with the use of formal methods, and we
did not do a completely formal develop
ment involving proofs and program verifi-
cation. Nevertheless, we found that we
gained enormous benefit from using the
Z specification notation,' which is one of
several formal-methods notations.

The seven most prevalent formal-meth-
ods myths are variants of the following:

1 . Formal methods can guarantee that soj-
ware isperfect. The most important myth is
that formal methods are somehow all-
powerful - if only we mortals could apply

11

them. This isa pernicious myth, because it
leads to both unrealistic expectations and
the idea that formal methods are some-
how alhr-nothing. The reality is that no
such guarantee can be given - but the
usefulnessof formal methods does not de-
pend on such absolute perfection.

2. Thy work by proving that programs are
correct. In the US, a lot of the work in for-
mal methods has concentrated on p r e
gram verification. This has made formal
methods seem very hard and not very
relevant to real life. However, you can
achieve alotwithout anyformal proofsatall.

3. Only highly m’tiral systems h e f i t from
lhezr uw. This belief is bared on the per-
ceived difficulty of using formal methods.
The truth is that critical systems do de-
mand the most thorough use of formal
methods, but any system benefits gener-
ally from using at least some formal tech-
niques.

4. They involve complex mathematics. For-
mal methods are based on mathematics,
and many people believe that this makes
them too difficult for practicing software
engineers. This myth is in turn based on a
view that mathematics is intrinsically diffi-
cult. At Praxis, we have found that the
mathematics of specification, at least, is
easily learned and used.

5. Thy increase the cost of development. It
used to be said that, although the use of
formal methods was very expensive, it was
worthwhile because of the lower mainte-
nance costs for the resulting software. But
this is a difficult argument to sell to hard-
pressed project managers, whose budget
is for development, not maintenance. In
fact, we have some evidence that develop
mmt can be cheaper when you use formal
specification.

6. Thq are incomprehensible to clients. A
formal specification is full of mathemati-
cal symbols, which render it incompre-
hensible to anyone unfamiliar with the
terminology. Therefore, it is supposed, a
formal specification is useless for non-
mathematical clients. However, mathe-
matics is not the only part of a formal spec-
ification - it supports many other ways of
expressing the specification that give the
client a better understanding early on in
the project.

7. Nobody uses [hem fbr real projects. For-
mal methods are often associated with ac-

ademic departments and research organi-
zations. It is thought that only such organi-
zations have the expertise necessary to use
them and that they are only suitable for
the idealized applications that such
groups would carry out. But our experi-
ence in the CASE project, and the experi-
ence of other industrial users, is turning
this point ofview into a myth -or at least
into history.

Myth 1
Formal methods can guucirantee that softruare

The fact is that formal methods are falli-
i.5 perfect.

ble.

It OUgM to be too
obvious to need saying,
but nothing can achieve

perfMion.
Unfortunately,

sometimes proponents
of formal methods claim
they offer an absolute

marantee that cannot be
achieved any other way.

It ought to be too obvious to need say-
ing, but nothing can achieve perfection.
Unfortunately, it sometimes seems that
proponents of formal methods claim they
offer an absolute guarantee that cannot
be achieved any other way. Ifyou take this
position then any problem with formally
developed software is a refutation of for-
mal methods’ usefulness. Formal meth-
ods have been strongly criticized precisely
on this absolutist basis.

It is important to understand formal
methods’ intrinsic limitations. Their falli-
bility is the most fundamental limitation,
and it arises from two facts: Some things
can never be proved and we can make mis
takes in the proofs of those things we can
prove.

Limits on proofs. A proof is a demon-
stration that one formal statement follows
from another. The real world is not a for-
mal system. A proof, therefore, does not

show that, in the real world, things will
happen as you expect. So you can never be
sure that your specifications are “correct,”
however much you prove about them.

This should not deter you. All engineer-
ing is concerned with making models of
the real world and using those models to
design artifacts. Models based on mathe-
matics are ideal because you can establish
the models’ properties by reasoning and
because you can manipulate the models
during design. The designer of a crane,
for example, abstracts the real crane into
a structure of idealized components with
known properties like mass and load-bear-
ing capacity. He uses this model to design
and predict the properties of the real
crane. There is no way he can prove that
the real crane will behave as he predicted.

Rut, on the whole, the correspondence
between the mathematical models used in
structural engineering and the real world
is wellenough understood that we trust
such mathematical models. The more ma-
ture the engineering discipline, the more
likely we are to trust the models it uses.
There have certainly been enough engi-
neering disasters to convince anyone that
the correspondence is not perfect, but n e
body would suggest that crane builders
should abandon mathematics.

In software, the limits of our modeling
techniques are also reasonably well un-
derstood. First, models cover only some
aspects of a program’s behavior. Second,
the correspondence between the formal
description and the real world is limited.

There are good mathematical models
for the behavior of sequential programs.
Models for concurrent behavior are also
available but less easy to use. Some people
say we cannot model timing constraints
formally; this is not strictly true, but it is
true that we do not know how to use such
models to help us develop software that
meets the constraints. Finally, we cannot
yet model nonfunctional properties like
performance, reliability, maintainability,
and availability.

The correspondence between our for-
mal models of programs and the actual
behavior of real systems is limited by three
factors: the behavior of the programming
language, the operating system, and the
underlying hardware. For safety-critical
systems, these limitations are crucially im-

12 IEEE Software

portant and we cannot assume that a pro-
gram is correct just because it has been
proved.

Mistakes may be made. Even within our
formalism, we can make mistakes in doing
proofs, just as we can make mistakes in
writing programs. Indeed, published for-
mal specifications have errors in them.

In spite of these apparent problems, for-
mal methods do work. There are two rea-
sons. One is that there are some ways in
which formal methods offer qualitatively
different and better guarantees than any
other method. The other is that even
though formal methods still let you make
mistakes, they are much better at expos
ing these mistakes.

Demonstrating correctness. There is an
often quoted remark that “Program test-
ing can be used to show the presence of
bugs, but never to show their absence!’”
This seems to imply that something else
- proving - can show the absence of
bugs. There are two senses in which this is
true (although in both cases the possibil-
ity of errors in the reasoning process
means that the demonstration is not abso-
lutely infallible) :

Some properties can be established
only by formal reasoning. Many require-
ments are couched as universal state-
ments, like ‘The program will always log
user actions” and ‘The system will never
lose a message.” Such statements can in
principle not be established by testing or
simulation, but they can be established by
reasoning about the specification.

Some steps cun be demonstrably cor-
rect. For example, the relation between a
program and its specification is a formal
one and can be proved to be correct. So
you can nearly guarantee that a program
meets a specification, even though this
does not mean that the program is per-
fect. (The guarantee is only “near” be-
cause of the limits of the mathematical
model in capturing the real world; even if
the guarantee were absolute, it would not
mean the program was perfect because
the specification might be wrong.)

Finding errors. Although they eliminate
only certain classes of errors - and then
not with absolute certainty - formal

The CASE prqiect
The CASE project we applied formal specifications to is a software-engineering tool set to

support project teams using SSADM, a structured systems-analysis and -design method.
Each team member has a workstation, and the workstations are networked to a central
project machine. The infrastructure of the CASE project provides - a muitiuser distributed project-management and configuration-management system
controlling all development information and tasks and

a set of basic classes (like diagram, table, and matrix) from which tools for structured
analysis can be developed by specialization.

The infrastructure is implemented on top of Sun Unix. It is coded in Objective C.
The specification is a document of about 340 pages written in Z with English comments. It

Development from this specification proceeded by
-writing a concrete specification of the interfaces in Objective C,
*writing, for some parts of the system, informal design documents,
-coding other parts directly from the Z specification,
writing some Z specifications of lower level modules, and - coding from the informal designs or lower level specifications.

We did no proof or mathematical program construction.
We used our normal company standards for project planning, integration and testing,

We coded about 58,000 lines of Objective C, of which about 37,000 lines were deliverable

The project lasted nearly 90 weeks and used about 450 man-weeks of effort, of which

contains about 550 schemas defining about 280 operations.

configuration management, arid so on.

software.

about two were devoted to the system specification.

methods do make it much easier to find
all sorts of errors. In an informal specifica-
tion, it is hard to tell what is an error, be-
cause it is not clear what is being said.
When challenged, people try to defend
their informal specification by reinter-
preting it to meet the criticism. With a for-
mal specification, we have found that er-
rors are much more easily found - and,
once they are found, everyone is more
ready to agree that they are errors.

In this sense, formal methods are a sci-
entific approach to development, since
they offer specifications that can be re-
futed. (In informal software develop
ment, the specification is usually only re-
futed by testing. By this stage, it has of
course been made formal - by transla-
tion into a programming language - but
it is no longer easily comprehended by
people.)

In the CASE and other projects using
formal methods at Praxis, we have found
that the ability to expose errors is one of
these methods’ key benefits. Even though
we have undertaken very few proofs or
completely formal development steps, we
have found that inspections of formal
specifications reveal more errors than
those of informal specifications, and it is
more effective to inspect designs or p r e
grams against formal specifications than
against other kinds of design documenta-
tion. IBM has reported similar experi-
e n c e ~ . ~

Formal methods are all aboutfmgrampnnring.
The fact is that formal methods are all

about specifications.
I use the term “formal methods” to

cover the use of mathematics in software
development. The main activities I in-
clude are

writing a formal specification,
proving properties about the specifica-

tion,
constructing a program by mathemat-

ically manipulating the specification, and
verifying a program by mathematical

argument.
Thus, program verification is only one

aspect of formal methods. In many ways, it
is the most dificult. For non-safetycritical
projects, program verification is far from
the most important aspect of a formal de-
velopment. Since the cost of removing er-
rors increases dramatically as a project
progresses, it is more important to pay
thorough attention to the early phases.

System specification. From an econ-
omic point ofview, therefore, the mostim-
portant part of a formal development is
the system spenfication. For many projects,
this is the only part of the development
that is formal. In any case, a formal specifi-
cation of what a program is to do is a pre-
requisite for verifying that the program is
correct.

September 1990 13

;\formal specification is a precise defini-
tion ofwhat the software is intended to do.
You can give any piece of software, from a
single module to a whole system, a formal
specification. On the CASE project, we
used Z to write the formal specification of
the whole system. Such system specifica-
tions are the most practical and valuable
ways of using formal methods.

A formal system specification is compa-
rable in scope to a conventional require-
ments analysis using dataflow or entity-re-

lationship diagrams. It differs from con-
ventional design specifications in that it is
concerned only with the function of the
system and makes no commitments to its
structure.

To illustrate the notion of a formal spec-
ification, the box below shows an example
that is a simplification of part of the CASE
specification. It is written in Z. A Z specifi-
cation is a mathematical model of the sys
tem to be built. It consists of two parts: a
definition of the state of the system and a

collection of definitions of operations on
the system.

A specification is abstract in three
senses:

It uses data types, like sets and rela-
tions, that can model applications di-
rectly, rather than computer-oriented
types like arrays. In the example, I use sets
to represent the collections of tasks and
documents in the system and a function to
represent the relationship between them.
These representations capture the es-

The CASE project system contains acollection of documents and a
collection of tasks. Each document is produced by a task; tasks may
produce more than one document; all tasks produce at least one
document.

To describe this in Z, we built a mathematical model. We did not say
what “tasks” and “documents” are, so we just let these be represented
by the names TASK and Doc at this stage. In Z notation, the text in the
first part of a schema is the declaration, which describes the model’s
components; the text in the second part of the schema is the predicate,
which describes the model’s popedies. Schemas are split by horizon-
tal rules.

Defining tasks and documents. This part of the model is called

- TasksAndDocuments
documents : P DOC
tasks : P TASK
OutpufTask: DOC--TASK

TasksAndDocuments. The specification is

dorn outputTask = documents
ran oufputTask= tasks

In Z, the symbol fora set of things is P, which you can pronounce “set
of.”Thefirsttwolinesof our model definethecomponentsdocuments,
whichisasetofDocs,andtasks, whichisasetof~ns~s.Thisexpresses
the fact that ‘The system contains a collection of documents and a
collection of tasks.”

Next, you must say that “each document is produced by a task.” We
did this in two parts. First, we set up an association between docu-
ments and the tasks that produce them, which we called outputTask.
This association is written as a function, for which the 2 symbol is +,
that tells us that a document can only be the output of one task.

Then you must say that each document is produced this way, so you
say that the action associates all the documents you know about with
tasks: That is done in the statement ”dorn outputTask = documents,’’
because the expression “dorn outputTask means “all the documents
that are associated with tasks by the function outputTask.”

Similarly, the Z expression “ran outputTask means “all the tasks that
are associated with documents by the function outputTask.” To ex-
pressthe requirementthat all tasks produce at least one document, we
said “ran outputTask = tasks.”

The final part of our English specification is that ‘Tasks may produce
more than one document”; there is no need to say anything special
about this in the mathematics, since the specification as it stands
allows it. In formal specifications, anything not forbidden is allowed; if
we had wanted to say that “tasks may not produce more than one
document,” we could easily have done so.

Removing documents. We then specified the operation to remove
a document. A document can be removed only if it is known to the
system. When it is removed, the document is no longer recorded as a
tasks output. If this causes a task to have no remaining outputs, the
task is also removed. The specification is

RemoveDocument
A TasksAndDocuments r oldDoc? : DOC

I oldDoc? E documents I outputTasK = { oldDoc?] 4 outputTask

To say this in Z, you first say that you are defining an operation that
changes the part of the state called TasksAndDocuments; that is the
meaning of the line “ATasksAndDocuments.”

Next, you declare that the operation has an input parameter, old-
Doc?, of type DOC, which is the document to be removed,

Now you have to say what the operation actually does. First, for it to
do anything, the document you are trying to get rid of must be one of
the known documents. In 2, you say it must be a member of the set of
known documents: “oldDoc? E documents.”

Finally, you define the effect. You can do this very simply: All you do
is remove the document from the function outputTask. The way to do
this in 2 is to give an equation that tells you what the new value of
outputTask, called outputTask‘, will be. The symbol for removing ele-
ments from the domain of afunction i s d , so the equation you want is
“outputTask’ = {oldDoc?} ‘BoutputTask.”

You can rely on the other properties of the state to ensure that, when
you do this, the document will also disappear from the documents set,
since you defined the documents set to be identical to the domain of
outputTask. Furthermore, if this leaves a taskwith no outputs, that task
too will disappear, since all tasks are defined to produce at least one
document. If you want, you can prove that these changes will happen.

14

-_ ..

IEEE Software

--

sence of what is required better than the
corresponding implementation struc-
tures.

It specifies what is to be done rather
than hmit is to be done. The definition of
the operation RemoveDocument, for ex-
ample, simply says that, after the opera-
tion, the relevant document has been re-
moved. It needs to say nothing about how
the removal is done, nor how any related
task is found and removed.

It specifies only whatever level of detail
is necessary; you can simply leave unsaid
things that are not important. In the ex-
ample, we did not say what TASK and DOC
actually were. This too is an implementa-
tion detail ofno interest to the specifier or
client.

This abstraction represents a proper
separation of concerns betwren what the
users want to define and what they are
content to leave to the implementers.
Such separation of concerns is important
in controlling the development process,
whatever lifecycle model you use. For ex-
ample, in a development that uses p r e
totyping to explore user requirements, it
is important to separate the essential be-
havior of the prototypes from incidental
details of the prototype implementation.

You remove the incompleteness of the
specification in two ways. First, you record
in other documents like statements of
nonfunctional requirements those things
that you would like to say at the specifica-
tion stage but cannot because of your
mathematical models' limitations. Sec-
ond, you supply during the subsequent
design and implementation steps the in-
formation that has been deliberately
omitted.

Occasionally, these subsequent steps re-
veal problems with the specification that
had been hidden by the abstraction. For
example, it is possible to write specifica-
tions that cannot be implemented effi-
ciently. In that case, you must revise the
specification itself at the design stage.

A specification is central to a project in
three ways:

The actual process ofconstructing the
specification is as important as its exis
tence.

Proofs of the specification's properties
are at least as useful as proofs of correct
implementation.

You can construct implementations
from the specification so they arc correct.

Benefits. We found that writing the
CASE specification helped us to clarify the
requirements, discover latent errors and
ambiguities, and make decisions about
functionality at the right stages.

For example, we started off with elab
orate requirements for documents to
have different status values with complex
transitions between them. A formaliza-
tion of this let us simplify the model into a
few distinct concepts. For example, we
modeled the extent of machinechecking
a document separately from how far it had
been through a formal approval process.
This made it easy to understand and verify

Formal specifications let
you say whatever you

think is important at the
specficath stage. But,
if you really are prepared
to leave decisions until
a later w e , you can

do that, too.

with the user that our rules governing
these statusvalues were correct. Such clar-
ification of requirements can lead to
smaller and simpler systems - and to less
rework in system test."

It is hard to fudge a decision when writ-
ing formal specifications, so if there are
errors or ambiguities in your thinking,
they will be mercilessly revealed: You will
find youcannotwrite acoherentspeciiica-
tion or that, when you present the specifi-
cation to the users, they will quickly tell
you that you have got it wrong. Better now
than when all the programming money
has been spent!

Several times during the development
of the CASE project, we discovered unex-
pected consequences of the specification.
For example, early on we wrote a specifica-
tion that allowed documents, but not
tasks, to have versions. We rapidly discov-
ered that we could not express this model
formally. To get over this, we introduced
the concept of a taskversion, which repre-
sented the running of a task with a partic-

ular collection of documentversions. This
concept turned out to represent a real-
world object that was central to the way
that the CASE tool set would be used, but
we had not been able to see this usage
clearly in an informal description of the
system.

Formal specifications let you say what-
ever you think is important at the specifi-
cation stage. At the same time, ifyou really
arc prepared to leave decisions until a
later stage, you can do that, too.

Our example has a typical instance of
such a decision. We defined, in the specifi-
cation, precisely what happens when the
last output of a task is removed: The task is
removed as well. It is likely that an infor-
mal specification would not have made
this clear, and the coder would have had
to make a decision. But this clearly is a
specification matter, since the effect is visi-
ble to the user. Omitting it from the for-
mal specification, whether accidentally or
deliberately, would be very obvious -
there would be a component of the state
whose value was undefined.

Specifications and proofs. Once you
have a formal specification, you can prove
things about the specification itself, aswell
as proving that a program satisfies it.
These other properties may have to do
with consistency of the specification or
completeness of operation definitions.
They may also be proofs that the specifica-
tion (and thus the developed software)
will meet certain key requirements. For
safety and security, these may be certain
kinds of integrity or other important re-
quirements. In any case, because errors at
this stage are more costly than implemen-
tation errors, proofs of these properties
are correspondingly more important
than proofs of implementations. Jim
Woodcock5 has shown reasoning applied
to a practical specification (the CICS stor-
age manager).

Implementing from formal specific*
tions. When you do come to implement
specifications formally, you do not do it by
writing a program and then trying to
prove that it meets the specification. This
is infeasible for any but the smallest p r o
grams. Instead, you construct a correct
program in small steps. Each step takes

September 1990 15

the specification and produces something
a little nearer to the final program. Each
step is small enough that you can see ex-
actlywhat needs to be proved to show that
the step is correct - and, if you doubt the
correctness, you can actually carry out the
proof. This style of development is de-
scribed in a textbookon theViennaDeve1-
opment Method6 and a book on con-
structing correct algorithms.’ It has been
used, for example, to implement hard-
ware from aformal specification in Z8

Each design step in such a development
adds some detail that was omitted from
the formal specification or makes some
decision that was postponed. The im-
plementers must

provide efficient implementation
structures to represent the application
concepts,

know or develop algorithms to carry
out the required operations, and

fill in details where these have deliber-
ately been left to theirjudgment.

In the CASE project, we used formality
only in writing the specification. We did
not try any program proving at all. The
kinds of design steps we made on the
CASE project were to:

Decide on a concrete language inter-
face for the operations.

Decide on a concrete data structure to
represent some abstract structure in the
specification; for example, an object class
to represent the function outputTask.
The designer was free to choose any suit-
able representation that had the required
properties.

Decide on some lower level operations
needed to implement the toplevel opera-
tions. For example, we identified a com-
ponent called the kernel that provided
low-level storage and distribution func-
tions. We specified this component for-
mally and implemented it from its Z speci-
fication.

Of course, these design steps required
creativity: The specification did not over-
constrain the designers, but it also did not
do theirjob for them. We found that mak-
ing such design decisions was in practice
relatively straightforward and that, most
important, it was easy to see if any pro-
posed design met the specification.

A specification is a kind of contract be-
tween specifiers and implementers, and if

the specification is formal, it is easy to in-
terpret the contract and to decide if it has
been satisfied.

Myth 3
Formal methods are on4 usefulforsafty-rit-

ical systems.
The fact is that formal specifications

help with any system.
Probably the largest practical applica-

tions of formal methods have been in
noncritical projects. Our CASE project,
for example, was not at all safety- or secu-
rity-critical. Formal methods should be
used wherever the cost of failure is high.
Systems whose cost of failure is high in-
clude those that are

critical in some way,
replicated many times,
fixed into hardware, or
dependent on quality for commercial

reasons.
Almost any serious piece of software

qualifies for at least one of these reasons.
Our CASE project, for example, had to be
a highquality product to satisfy the client
and its users.

Applying formal methods can benefit
many areas, including fitness for purpose,
maintainability, ease of construction, and
better visibility.

Formality offers ways to ensure the right
software is built. You can discuss the speci-
fication with the user and, in some cases,
build prototypes on the basis of the speci-
fication to demonstrate just what is pro-
posed. You can use formal reasoning to
demonstrate some of the specification’s
consequences, giving you something on
which to have a discussion with the user.

One of the main problems in maintain-
ing software is knowing what it is supposed
to do. Another is knowing what each part
is supposed to do, and thus what must be
preserved as the software is changed. For-
mal specifications are ideal for this pur-
pose.

Our experience shows that it is easier to
build a system from a formal specification
than by using other methods. Even when
we have not done development rigor-
ously, we have found coding from a formal
specification to be straightforward.

The application of formal methods can
also make you more confident in the de-
velopment process because at each stage it

is clearer what has and has not been done.
Monitoring is more reliable and thus de-
velopment is less risky.

Starting from aformal specification, the
development process can be very rigor-
ous, if it is done in small steps with each
step formally expressed and justified. It
can also be less rigorous, if the steps are
larger and justified only informally. You
choose the degree of rigor to suit the a p
plication. If the system is critical, it must of
course be developed completely formally.

However, many benefits of formal meth-
ods come from the specification stage.
Thus, on a noncritical system, even if
none of the rest of the development is for-
mal, just writing a formal specification is a
big improvement over other informal
methods.

Myth 4
Formal methods require highly trained math-

ematicians.
The fact is that the mathematics for

specification is easy.
Once it is recognized that the practice

of formal methods is most concerned with
writing specifications, the mathematical
difficulties become much less significant.
You can develop specifications themselves
with very straightforward mathematics
that any practicing engineer should know.

For example, in Z, the only branches of
mathematics you need to write specifica-
tions are set theory and logic. The ele-
ments of both these are easily understood
and nowadays are taught to teenagers.

Of course, before engineers can use for-
mal methods, they must be trained - in
this respect, formal methods are no differ-
ent from other methods. Our experience
is that such training is not difficult and
that people with only high-school math
training can write excellent formal specifi-
cations. Certainly anyone who can learn a
programming language can learn a speci-
fication notation like Z.

The specification of a problem is shorter
and much easier to understand than its
expression in a programming language.
Consider the operation RemoveDocu-
ment in the example in the box on p. 14:A
definition of this operation in, say, pseu-
docode would be far longer and less com-
prehensible.

People have a fear of new symbols. But

IEEE Software 16

mathematical symbols are introduced to
make mathematics easier, not more diffi-
cult. People quickly become Familiar with
the new symbols. The difficulty in learn-
ing logic is not the symbols, any more than
the difficulty in learning Russian is learn-
ing the Cyrillic alphabet.

Difficulties. This does not mean that ev-
erything about writing specifications is
easy. When the notation has been learned,
there are still difficulties. Some people are
better at it than others,just as some people
are better at programming than others.

The main difficulty is making the right
connections between the real world and
the mathematical formalism. It can be
hard to choose the right things in the real
world to model -to get the right level of
abstraction. Some programmers put too
much detail into their specifications and
make them too complicated. You can also
make the opposite error: writing specifica-
tions that are too abstract.

However, these are problems of any
kind of specification, not problems intro-
duced by formality. Many programmers
find it difficult to write specifications in
any notation, because it is difficult for
them to get away from programming-lan-
guage detail. When using formal specifi-
cations, studying good published case
studies and getting advice from an experi-
enced person can help you avoid these
problems.

Training hints. We have found that
there are three stages of training needed:

Training in discrete mathematics,
which needs to cover elementary set theory
and formal logic. For those who have a
mathematical background but are unfa-
miliar with these topics, a single day suf-
fices to introduce the ideas. Even for the
innumerate, less than a week's training is
needed. There are many good textbooks
on discrete mathematics.

Training in the particular formal nota-
tion. A Z or VDM course typically takes
one or two weeks, assuming that the par-
ticipan ts have the necessary mathematical
background. Textbooks are available for
VDM6 and Z.'

Tutoring and consultation in real pro-
jects. After training, students can use for-
mal methods, but they will still encounter

difficulties. To get over these, we recom-
mend workshops where you can tackle
problems with the help of a tutor. It is also
essential that every project using formal
methods have access to at least one person
with experience using the method. If nec-
essary, you can ensure this by hiring some
consultants during the early stages of the
project: 10 mandays of effort, used wisely,
may suffice.

A much higher level of mathematical
skill is needed if you intend to go beyond
formal specification and carry out a fully
formal development that includes proofs.
It is unrealistic to expect the majority of
software engineers to be able to do proofs
easily. Nor is it likely that machine assis-
tance will be any help. Proof tools are still

A much higher level of
mathematical skill is
needed if you intend to

go beyond *mal
specil5cation andcany

out a hlly formal
development that
includes proofs.

in a very primitive state - and, in any
event, there are fundamental difficulties
with machine assistance for proof.

Therefore, competent people who can
cope with the necessary mathematical ma-
nipulations are the ones who must carry
out safety-critical projects. Of course, the
same is true of bridge building.

Myth 5
F m l methods increase the cost of h e b p

ment.
The fact is that writing a formal speci-

fication decreases the cost of develop-
ment.

A completely formal development that
includes proving each development step
is very expensive - probably infeasibly so
for all but the most critical applications.
But because many benefits come just from
writing formal specifications, it is impor-
tant to know if this too is costly.

Lower development costs. It is notori-
ously difficult to compare the costs of

developing software under different
methods. There are no figures for the de-
velopment cost5 for the same piece of soft-
ware using both a wellestablished formal
method and a comparable informal
method. However, experience on the cost
of projects that use formal specification is
beginning to accumulate. None of this ev-
idence supports the idea that develop
ment costs are higher if you use formal
specifications; if anything, it suggests that
they are lorum.

Our own experience on the CASE proj-
ect showed a productivity (measured in
lines of code per day) measured from start
of specification to acceptance that was
much higher than our normal estimating
figure. Because we implemented the
CASE project in a productive language
(Objective C), the productivity ratio in
terms of useful function implemented per
day would probably be even higher.

Rolls-Royce and Associates has re-
ported4 that on a safety-critical project
where it used formal specification and
planned testing, it achieved better p r e
ductivity figures than when it did neither.
(At first, the productivity was lower, but
this was attributed to learning to use vari-
ous non-user-friendly tools and was not
connected with the formal method itself.)
The cost of learning to use the formal
method was not a significant problem, al-
though IBM has highlighted this learning
as an important one-time Rolls-
Royce reported that the 7 percent of the
time spent on specification avoided large
costs at the back end of the project.

Life-cycle changes. Although using for-
mal specification on a project does not
cost more, it does change the shape of the
project. More time is spent on the specifi-
cation phase - in the CASE project,
about 30 percent of the effort was spent
before implementation started. Why? Be-
cause more of the work is being done at
this stage than typical. But the implemen-
tation, integration, and testing phases are
shorter.

The longer specification phase does
cause a problem: It can be difficult to
manage the specification process, be-
cause it is harder to see what progress is
being made. Especially at the beginning,
it can be hard to believe that any progress

September 1990 17

Figure 1. The life history of a specification.

is being made at all, since all sorts of ideas
are being tried and thrown away - which
is as it should be. Our experience of how
the size ofa specification grows is shown in
Figure 1 . (For the actual size of a real spec-
ification and the corresponding code, see
the box on p. 14.)

At first, very little seems to happen. But
after a time, people begin to understand
the problem, and rapid progress is made.
Then the growth slows down and, if things
are going well, the specification starts to
get smaller. This is the where the problem
is really understood and where regulari-
ties and similarities are recognized, which
leads to the specification's structure being
tightened and improved. This polishing
process can continue indefinitely, and a
good project manager must knowwhen to
stop. He certainly should not stop while
the specification is still growing - at that
point, the problem is still not fully cracked.

It is important to record the plausible
specifications that were tried and re-
jected, as well as the reasons for their re-
jection, not just the final Specification.
These records will help guide future pro-
jects, prevent the repetition of unfruitful
work, and guide the maintainers.

It is also imperative to recognize that
specifications are never perfect. When it
comes to the implementation stage, you
will find deficiencies in the specification.

When this happens, you must modify the
specification - under change control, of
course. There is a strong temptation to
correct the implementation but not the
specification - this leads to rapidly in-
creasing divergence between the specifi-
cation and the actual software and means
that the specification becomes useless for
maintenance. The two must be kept in
step. If you do this, the specification con-
tinues to be a valuable document
throughout the software's life. Clearly,
there is a cost in doing this, but it is not
large: On the CASE project, it was less
than 5 percent of the implementation
phase's effort.

F m l methods are unacceptable to usm.
The fact is that formal specifications

help users understand what they are get-
ting.

How? The specification captures what
the user wants kfme it is built. But to real-
ize this benefit, you must make the specifi-
cation comprehensible to the user. There
are three ways to do this:

Paraphrase the specification in natural
language.

Demonstrate consequences of the
specification.

Animate the specification.
The first way is always essential. A mathe-

matical specification must be accompa-
nied by a natural-language description
that explains what the specification
means in real-world terms and why the
specification says what it does.

You must allocate time and resources
for the effort to write this accompanying
text. This effort is worthwhile, since our
experience has shown that documents
produced from a formal specification can
be more comprehensible, more accurate,
shorter, and more useful than informal
specifications.

A well-produced formal specification
can have the mathematics taken out of it
entirely - the result is a natural-language
document that is a much better specifica-
tion of the system than a conventional in-
formal Specification. You can also use for-
mal specifications with diagrammatic
notation - there is nothing to prevent
the use of any notation that helps explain
the system.

One way that formal specifications are
more useful than any other method is that
they may let you demonstrate by formal
reasoning to the user that the specifica-
tions meet certain requirements. You can
do this only if the requirements can
themselves be expressed formally, but
many properties like safety and security
can be partially expressed formally. Even
if there are no formally expressed require-
ments, you can draw out certain conse-
quences of the specification and present
them to the user. In the CASE project, for
example, we deduced (although we did
not formally prove) properties like "No
version stored on the project machine is
ever changed."

Formal specifications are sometimes
thought of as antithetical to techniques
like animation and prototyping. In fact,
the approaches are complementary, and
both have the goal of establishing user re-
quirements more reliably. One way to use
them together is to build prototypes to ex-
plore requirements issues and then to re-
cord the results in a formal specification
as the basis of subsequent development.
Sometimes, you can use prototypes to de-
fine areas that are not well expressed in
formal specifications. On the CASE proj-
ect, we used prototyping to explore details
of the user interface and formal specifica-
tions for the system's actual functions.

18 IEEE Software

You can animate some formal nota-
tions, giving you an immediate pro-
totyping capability. However, the more
powerful specification languages cannot
be executed this way, and so a separate
step, like implementation in Prolog, is re-
quired to animate the specification.

Myth 7
Formal methods are not wed on real, large-

scale soflware.
The fact is that formal methods are used

daily on industrial projects.
Several organizations, not just Praxis,

are using formal methods on industrial-
scale projects. Many people know of appli-
cations in the security area, but the scope
of formal methods is far wider. Examples
of the kinds of project that are using for-
mal methods include the following:

Transaction processing. IBM’s CICS is
a large, 2@year-old transaction-processing
system. It contains more than a half mil-
lion lines of code. IBM is using Z to
respecify key CICS interfaces to improve
its maintainability. So far, Z specifications
have been written for more than 100,000
lines of new or changed code.’

Hardware. The use of formal methods
is not confined to software. There are at
least three examples of the notation Z
being used to specify hardware. One is the
Secure Multiprocessing of Information by
Type Environment secure computer ar-
chitecture. SMITE’S order code has been
specified in Z by the British company
Plessey. The floating-point unit for the
transputer was specified in Z, incidentally
revealing errors in many other floating-
point implementations.* Tektronix has
been using Z to specify the functionality of
oscilloscope families, as the article on p.
29 describes.

Compilers. The Danish Datamatik
Center has for many years been develop
ing industrial compilers using formal
methods.

Software tools. Our CASE project sys-
tem is only one, although the most com-
plete, example of the use of formal specifi-
cation in software tools. Other examples
are the interface to the Portable Common
Tools Environment: a European stan-
dard for software engineering, and the
specifications of database-based software-
engineering environments.”

Reactor control. KollsKoyce and Ass*
ciates used a combination of English and
formal specification to specify nuclear-re-
actor control software! It used animation
to explore the specification with the re-
sponsible engineer.

Clearly, these projects represent a tiny
fraction of all software development.
However, they are real industrialscale a p
plications, and they report positive bene-
fits from the use of formal methods.

Our own experience on the CASE proj-
ect has been that formal methods can be
very effective. But they are only one part
of a project: The CASE project used for-
mal specification in the framework of nor-
mal quality-assurance and project-man-
agement controls and with other good
design, implementation, and testing tech-
niques.

Formal methods offer no magic guar-
antees: Our CASE project was an ordinary
project with its share of problems. But the
project team believes that the formality of
the specification was a major benefit
throughout the project.

s a result of our experiences, we
believe that formal methods must A be better understood by develop

ers at large. They are powerful tools,
although by no means a panacea. The rea-
sons for their effectiveness are not nec-
essarily the reasons for which they were
originally developed. Nor are the difficul-
ties in their use the obvious ones of nota-
tion and mathematical sophistication.

Instead of perpetuating the seven
myths, I offer seven facts to replace them:

1. Formal methods are very helpful at
finding errors early on and can nearly
eliminate certain classes of error.

2. They work largely by making you
think very hard about the system you p r e
pose to build.

3. They are useful for almost any appli-
cation.

4. They are based on mathematical
specifications, which are much easier to
understand than programs.

5. They can decrease the cost of devel-
opment.

6. They can help clients understand
what they are buying.

7. They are being used successfully on
practical projects in industry. 0:.

References
I . J.M. Spivey, The Z Nolation: A Rpfumcr

Manual, Prentice-Hall, Englewood Cliffs,
NJ., 1989.

2. 0.j. Dahl, E.W. Dijkstra, and C.A.R.
Hodre, Stmclurr*l Progrurnming Academic
Press, Orlando, Ha., 1972, p. 6.

3. CJ. Nix and B.P. Collins, “The Use of Soft-
ware Engineering, Including the Z Nota-
tion, in the Development of CICS,” Quasty
Assurance, September 1988, pp. 103-1 10.

4. .J.V. Hill, P. Robinson, and P.A. Stokes,
‘Safety-Critical Software in Control Sys
tems,” in Computers a d Safety, Inst. Elecui-
cal Eng., Stevenage, Hem, England, UK,

5. J.C.P. Woodcock, “Calculating Properties
of Z Specifications,” ACM SIGSoft %ftwarl-
Eng. Notes, July 1989, pp. 43-54.

6. C.B. Jones, Systematic S o w r e Deuekpnent
Using VDM, Prentice-Hall, Englewood
Cliffs, N.J., 1986.

7. D. Cries, The Science of Propurnrning,
Springer-Verlag, New York, 198 1.

8. C. Barrett, “Formal Methods Applied to a
Floating-point Number System,” E,%
Tram. SOfhureEng., May 1989, pp. 61 1421.

9. C.A. Middleburg, ‘WSL. A Language for
Structured VDM Specifications,” F m l
Aspects .f Cmfmting Jan.-March 1989, pp.

IO. A.N. Earl et al., “Specifying a Semantic
Model for Use in an Integrated Project-
Support Environment,” in SoWreXngi-
neering Envirmmats, I. Sommerville, ed.,
Peregrinus, London, 1986, pp. 202-219.

1990, pp. 92-96.

115-135.

Anthony Hall is a principal consultant with
Praxis Systems. He has worked on software-
engineering methods, tools, and environ-
ments, as well as developing software applica-
tions. His main interest is the application of
advanced software-engineering techniques
like formal methods and object-oriented devel-
opment to industrial projects.

Hall has an MA and a DPhil in chemistry
from Oxford University and is a member of
ACM and the British Computer Society.

Address questions about this article to the
author at Praxis Systems, 20 Manvers St., Bath
BA1 IPX, England, UK; UUCPnet j ah@
praxis.co.uk.

September 1990 19

http://praxis.co.uk

